Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants

نویسندگان

  • N. K. Pickering
  • V. H. Oddy
  • J. Basarab
  • K. Cammack
  • B. Hayes
  • R. S. Hegarty
  • J. Lassen
  • J. C. McEwan
  • S. Miller
  • C. S. Pinares-Patiño
  • Y. de Haas
چکیده

Measuring and mitigating methane (CH4) emissions from livestock is of increasing importance for the environment and for policy making. Potentially, the most sustainable way of reducing enteric CH4 emission from ruminants is through the estimation of genomic breeding values to facilitate genetic selection. There is potential for adopting genetic selection and in the future genomic selection, for reduced CH4 emissions from ruminants. From this review it has been observed that both CH4 emissions and production (g/day) are a heritable and repeatable trait. CH4 emissions are strongly related to feed intake both in the short term (minutes to several hours) and over the medium term (days). When measured over the medium term, CH4 yield (MY, g CH4/kg dry matter intake) is a heritable and repeatable trait albeit with less genetic variation than for CH4 emissions. CH4 emissions of individual animals are moderately repeatable across diets, and across feeding levels, when measured in respiration chambers. Repeatability is lower when short term measurements are used, possibly due to variation in time and amount of feed ingested prior to the measurement. However, while repeated measurements add value; it is preferable the measures be separated by at least 3 to 14 days. This temporal separation of measurements needs to be investigated further. Given the above issue can be resolved, short term (over minutes to hours) measurements of CH4 emissions show promise, especially on systems where animals are fed ad libitum and frequency of meals is high. However, we believe that for short-term measurements to be useful for genetic evaluation, a number (between 3 and 20) of measurements will be required over an extended period of time (weeks to months). There are opportunities for using short-term measurements in standardised feeding situations such as breath 'sniffers' attached to milking parlours or total mixed ration feeding bins, to measure CH4. Genomic selection has the potential to reduce both CH4 emissions and MY, but measurements on thousands of individuals will be required. This includes the need for combined resources across countries in an international effort, emphasising the need to acknowledge the impact of animal and production systems on measurement of the CH4 trait during design of experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options.

The goal of this review was to analyze published data on animal management practices that mitigate enteric methane (CH4) and nitrous oxide (N2O) emissions from animal operations. Increasing animal productivity can be a very effective strategy for reducing greenhouse gas (GHG) emissions per unit of livestock product. Improving the genetic potential of animals through planned cross-breeding or se...

متن کامل

Measurement of Methane Production from Ruminants*

On a global scale agriculture and in particular enteric fermentation in ruminants is reported to produce about one fourth (21 to 25%) of the total anthropogenic emissions of methane (CH4). Methane is produced during the anaerobic fermentation of hydrolyzed dietary carbohydrates in the rumen and represents an energy loss to the host besides contributing to emissions of greenhouse gases into the ...

متن کامل

Global Climate Change: Role of Livestock

Climate change is seen as a major threat to the survival of many species, ecosystems and the sustainability of livestock production systems in many parts of the world. Green house gases (GHG) are released in the atmosphere both by natural sources and anthropogenic (human related) activities. An attempt has been made in this article to understand the contribution of ruminant livestock to climate...

متن کامل

Historic, pre-European settlement, and present-day contribution of wild ruminants to enteric methane emissions in the United States.

The objectives of this analysis were to estimate historic (pre-European settlement) enteric CH(4) emissions from wild ruminants in the contiguous United States and compare these with present-day CH(4) emissions from farmed ruminants. The analysis included bison, elk (wapiti), and deer (white-tailed and mule). Wild ruminants such as moose, antelope (pronghorn), caribou, and mountain sheep and go...

متن کامل

Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review.

Although livestock production accounts for a sizeable share of global greenhouse gas emissions, numerous technical options have been identified to mitigate these emissions. In this review, a subset of these options, which have proven to be effective, are discussed. These include measures to reduce CH4 emissions from enteric fermentation by ruminants, the largest single emission source from the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015